Advanced Engineering Maths by HK DASS PDF free download

HK DASS Advanced Engineering Maths PDF, was published in 2012 and uploaded for 300-level Engineering students of Federal University of Technology, Owerri (FUTO), offering ENG307, MTH203, EEE407 course. This ebook can be downloaded for FREE online on this page.

Advanced Engineering Maths ebook can be used to learn Partial differentiation, multiple integral, differential equations, Determinants and Matrices, Vectors, special functions, Laplace Transform, Fourier Series.

Technical Details
Updated at: 30-August-2023
Size: 28.05 MB
Number of points needed for download: 37
Number of downloads: 538

Will you help us reach more students?

Use the link below to get 26 points for each download by a registered user from your shared link below. Share on social media groups to reach more students.

Books related to Advanced Engineering Maths

Author: Herbert Kreyszig, Erwin Kreyszig

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: MTH207

Topics in Advanced Engineering Mathematics Student Solutions Manual and Study Guide,10th edition Volume 1&2

Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Author: Erwin Kreyszig, Herbert Kreyszig, Edward

School: University of Nigeria, Nsukka

Department: Engineering

Course Code: MTH207

Topics in Advanced Engineering Mathematics ,10th Edition

Topics: Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Author: John Bird

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG307, EN308

Topics in Higher Engineering Mathematics ,Eighth edition

Topics: Algebra, partial fraction, logarithm, exponential function, inequality, arithmetic progression, geometric progression, binomial series, Maclaurin's series, iterative method, binary, octal, hexadecimal, boolean algebra, logic circuits, trigonometry, circle, Trigonometric waveforms, hyperbolic functions, Trigonometric identities, Trigonometric equation, compound angles, irregular area, irregular volume, graph, complex numbers, De Moivre’s theorem, matrix, determinant, vector geometry, vector, scalar product, vector product, differentiation, calculus, integration, differential equation, parametric equations, implicit functions, Logarithmic differentiation, hyperbolic functions, Partial differentiation, Total differential, rate of change, Maxima, minima, saddle point, integral calculus, hyperbolic substitution, trignometric substitution, Integration by parts, Reduction formulae, double integrals, triple integrals, Numerical integration, Homogeneous first-order differential equation, first-order differential equation, differential calculus, Linear first-order differential equation, Numerical methods, power series, Statistics, probability, Mean, median, mode, standard deviation, binomial distribution, Poisson distribution, normal distribution, Linear correlation, Linear regression, Sampling, estimation theories, Significance testing, Chi-square test, distribution-free test, Laplace transform, Inverse Laplace transform, Heaviside function, Fourier series, periodic functions, non-periodic function, even function, odd function, half-range fourier series, harmonic analysis, Z-Transform

Author: Ken Stroud, Dexter Booth

School: Federal University of Technology, Owerri

Department: Engineering

Course Code: ENG307, ENG308

Topics in Advanced engineering mathematics

Topics: Advanced engineering mathematics, numerical solution, Newton-Raphson iterative method, numerical methods, linear interpolation, graphical interpolation, Lagrange interpolation, Laplace transform, convolution theorem, periodic functions, Z transform, difference equations, Invariant linear systems, Differential equations, Fourier series, harmonics, Dirichlet conditions, Gibbs’ phenomenon, Complex Fourier series, complex spectra, Fourier’s integral theorem, Leibnitz-Maclaurin method, power series, Cauchy-Euler equi-dimensional equations, Leibnitz theorem, Bessel’s equation, Gamma functions, Bessel functions, Legendre’s equation, Legendre polynomials, Rodrigue’s formula, Sturm-Liouville systems, Orthogonality, Taylor’s series, First-order differential equations, Euler's method, Runge-Kutta method, Matrix algebra, Matrix transformation, Eigenvalues, direction fields, phase plane analysis, nonlinear systems, dynamical systems, Bifurcation, partial differentiation, Elliptic equations, Hyperbolic equations, Parabolic equations, multiple integration, Green’s theorem, integral functions, error function, elliptic functions, vector analysis, Curvilinear coordinates, complex analysis, complex mapping, Maclaurin series, optimization, linear programming, Linear inequalities

Author: Steven Chapra, Raymond Canale

School: University of Uyo

Department: Engineering

Course Code: GRE411

Topics in Numerical methods for engineers ,8th edition

Topics: Mathematical Modeling, Engineering Problem Solving, Programming, Software, structured programming, Modular Programming, EXCEL, MATLAB, Mathcad, Significant Figures, accuracy, precision, error, Round-Off Errors, Truncation Errors, Taylor Series, Bracketing Methods graphical method, bisection method, False-Position Method, Simple Fixed-Point Iteration, Newton-Raphson Method, secant method, Brent’s Method, multiple roots, Roots of Polynomials, Müller’s Method, Bairstow’s Method, Roots of Equations pipe friction, Gauss Elimination, Naive Gauss Elimination, complex systems, Gauss-Jordan, LU Decomposition, Matrix Inversion, Special Matrices, Gauss-Seidel, Linear Algebraic Equations, Steady-State Analysis, One-Dimensional Unconstrained Optimization, Parabolic Interpolation, Golden-Section Search, Multidimensional Unconstrained Optimization, Constrained Optimization, linear programming, Nonlinear Constrained Optimization, Least-Squares Regression, linear regression, polynomial regression, Multiple Linear Regression, Nonlinear Regression, Linear Least Squares, interpolation, Newton’s Divided-Difference Interpolating Polynomials, Lagrange Interpolating Polynomials, Inverse Interpolation, Spline Interpolation, Multidimensional Interpolation, Fourier Approximation, Curve Fitting, Sinusoidal Functions, Continuous Fourier Series, Fourier Integral, Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform, power spectrum, Newton-Cotes Integration Formulas, Trapezoidal Rule, Simpson’s Rules, multiple integrals, Newton-Cotes Algorithms, Romberg Integration, Adaptive Quadrature, Gauss Quadrature, Improper Integrals, Monte Carlo Integration, Numerical Differentiation, High-Accuracy Differentiation Formulas, Richardson Extrapolation, partial derivatives, Numerical Integration, Runge-Kutta Method, Euler’s Method, Boundary-Value Problems, Eigenvalue Problems, Finite Difference, Elliptic Equations, Laplace equation, Boundary Condition, Heat-Conduction Equation, Crank-Nicolson Method, Finite-Element Method

Author: Richard Bronson, Gabriel Costa

School: University of Ibadan

Department: Science and Technology

Course Code: MAT241

Topics in Schaum’s Outline of Differential Equations ,4th edition

Topics: Differential Equations, Modeling, Qualitative Methods, First-Order Differential Equations, Separable First-Order Differential Equations, Exact First-Order Differential Equations, Linear First-Order Differential Equations, Linear Differential Equations, Second-Order Linear Homogeneous Differential, nth-Order Linear Homogeneous Differential Equations, Method of Undetermined Coefficients, Variation of Parameters, Initial-Value Problems, Laplace Transform, matricies, Inverse Laplace Transforms, Convolutions, Unit Step Function, power series, Series Solutions, Classical Differential Equations, Gamma Functions, Bessel Functions, Partial Differentiall Equations, Second-Order Boundary-Value Problems, Eigenfunction Expansions, Difference Equations